Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis.

نویسندگان

  • Verónica Barragán
  • Eduardo O Leidi
  • Zaida Andrés
  • Lourdes Rubio
  • Anna De Luca
  • José A Fernández
  • Beatriz Cubero
  • José M Pardo
چکیده

Intracellular NHX proteins are Na(+),K(+)/H(+) antiporters involved in K(+) homeostasis, endosomal pH regulation, and salt tolerance. Proteins NHX1 and NHX2 are the two major tonoplast-localized NHX isoforms. Here, we show that NHX1 and NHX2 have similar expression patterns and identical biochemical activity, and together they account for a significant amount of the Na(+),K(+)/H(+) antiport activity in tonoplast vesicles. Reverse genetics showed functional redundancy of NHX1 and NHX2 genes. Growth of the double mutant nhx1 nhx2 was severely impaired, and plants were extremely sensitive to external K(+). By contrast, nhx1 nhx2 mutants showed similar sensitivity to salinity stress and even greater rates of Na(+) sequestration than the wild type. Double mutants had reduced ability to create the vacuolar K(+) pool, which in turn provoked greater K(+) retention in the cytosol, impaired osmoregulation, and compromised turgor generation for cell expansion. Genes NHX1 and NHX2 were highly expressed in guard cells, and stomatal function was defective in mutant plants, further compromising their ability to regulate water relations. Together, these results show that tonoplast-localized NHX proteins are essential for active K(+) uptake at the tonoplast, for turgor regulation, and for stomatal function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake.

Stomatal movements rely on alterations in guard cell turgor. This requires massive K(+) bidirectional fluxes across the plasma and tonoplast membranes. Surprisingly, given their physiological importance, the transporters mediating the energetically uphill transport of K(+) into the vacuole remain to be identified. Here, we report that, in Arabidopsis guard cells, the tonoplast-localized K(+)/H(...

متن کامل

The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction.

Intracellular Na(+)/H(+) (NHX) antiporters have important roles in cellular pH and Na(+), K(+) homeostasis. The six Arabidopsis thaliana intracellular NHX members are divided into two groups, endosomal (NHX5 and NHX6) and vacuolar (NHX1 to NHX4). Of the vacuolar members, NHX1 has been characterized functionally, but the remaining members have largely unknown roles. Using reverse genetics, we sh...

متن کامل

Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation.

Gas exchange in plants is controlled by guard cells, specialized cells acting as turgor pressure-driven valves. Malate is one of the major anions accumulated inside the vacuole during stomatal opening counteracting the positive charge of potassium. AtALMT6, a member of the aluminum-activated malate transporter family, is expressed in guard cells of leaves and stems as well as in flower organs o...

متن کامل

Ion Transport at the Vacuole during Stomatal Movements1[OPEN]

Plant gas exchange with the environment is facilitated by stomata, small pores found on most aerial surfaces of land plants. Stomatal pores are formed between a pair of specialized guard cells. In C3 plants, open stomata allow the uptake of CO2 for photosynthesis during the day and at the same time the loss of water vapor, maintaining the transpiration stream. At night and during drought, plant...

متن کامل

Ion Transport at the Vacuole during Stomatal Movements.

Plant gas exchange with the environment is facilitated by stomata, small pores found on most aerial surfaces of land plants. Stomatal pores are formed between a pair of specialized guard cells. In C3 plants, open stomata allow the uptake of CO2 for photosynthesis during the day and at the same time the loss of water vapor, maintaining the transpiration stream. At night and during drought, plant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 24 3  شماره 

صفحات  -

تاریخ انتشار 2012